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Abstract
A theory of the separation of a system of indirect excitons into a condensed and a gaseous phase
with the formation of regular patterns of alternating phases in inhomogeneous external fields is
developed. The model of spinodal decomposition of phase transitions, generalized for systems
of unstable particles, is used. The theory is applied to the study of the non-uniform distribution
of the exciton density in a double quantum well under a slot cut in a metallic electrode. It is
shown that in a certain range of exciton generation rates a chain of light-emitting islands
periodically localized along the slot is developed. With increasing width of the slot, the chain
splits into two parallel chains shifted by a half period with respect to each other. By creating a
biased external potential along the slot, the periodical pattern could be forced to move along the
slot. The effect of the motion of the islands should manifest itself as time oscillations of the
intensity of the light emitted from a fixed point.

1. Introduction

Recent studies of the light emission of indirect excitons
from semiconductor double quantum wells have reported the
observation of the development of bright circles and spots
often in regular patterns. Indirect excitons are created when an
electric field applied to a double quantum well heterostructure
forces electrons and holes to different wells. They are
particles with large lifetimes due to the small overlap of the
wavefunctions. This fact allows us to achieve exciton systems
with great density suitable for studying processes of the
exciton–exciton interaction. The observed spatial structuring
manifested itself by the appearance of inhomogeneities in
the space distribution of the exciton density. Neither the
inhomogeneity of the system nor any external forces can
correspond to the regularity and symmetry of the spatial
arrangement of the arising bright regions. The break of the
uniform symmetry is spontaneous. For example, the authors
of papers [1, 2] observed luminescent rings very far from
the exciting laser spot, at distances significantly exceeding
the exciton diffusion length. In some cases, the ring broke
down into a number of periodically arranged fragments [1] in
spite of the fact that the rate of the exciton generation caused
by the electron–hole recombination on the ring was uniform

everywhere along the ring’s circumference. Authors of the
paper [3] excited a double quantum well by light and measured
excitonic emission from the wells through a circular window in
a metallic electrode. They observed bright luminescent spots
situated periodically on a circle under the rim of the window.
Again, the conditions in different points under the rim were
the same and, therefore, the observed structuring involved a
symmetry break.

There are two approaches for the explanation of the
development of the complex emitting patterns. In the fist group
of works the explanations of the origin of the luminescent
structures are based on the Bose–Einstein statistics applied
to the systems of excitons [4–7] (on the Bose–Einstein
condensation or on the processes in which Bose–Einstein
statistics plays an important role). But these theories did not
progress to the point of being able to perform detailed studies
of the observed features or to relate the theoretical parameters
with the experimental data or to describe the evolution of the
patterns with the change of temperature, pumping intensity and
the parameters of the exciton system.

The second approach was formulated in the papers [8–11].
The theory explained the development of the patterns
experimentally observed in [1, 3] and also the other results,
obtained in [12] for the narrow line caused by condensed
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phase emission, such as the phase diagram—critical pumping
versus temperature, the dependence of luminescence intensity
on temperature at fixed pumping and the dependence of
luminescence on pumping at fixed temperature. The theory
relies on two main assumptions.

(1) There exists a certain condensed phase of excitons,
caused by some short-range attractive interaction between
indirect excitons. This attraction dominates over the
dipole–dipole repulsion if the distance between the
quantum wells is not very large. The attraction occurs
mainly due to the exchange interaction between the
electrons of the indirect excitons. The plausibility of
such an attractive interaction between indirect excitons
finds support in recent theoretical studies. The theoretical
possibility of the existence of an excitonic liquid phase in
double quantum well structures has been shown in [13].
Additionally, papers [14, 15] have demonstrated that the
indirect excitons may couple to form biexcitons.

(2) The finite value of exciton lifetime plays an important role
in the formation of the structures. Typically the exciton
lifetime is much larger than the time for the establishment
of local equilibrium, but it is less than the time for the
establishment of an equilibrium between different phases,
as the latter is controlled by slow diffusion processes. The
value of the lifetime determines the structures that arise
in the two-phase system. So, to study the parameters of
the two-phase system it is necessary to take into account a
finite value of the lifetime.

There are two popular mathematical models for the
description of the growth of new phases during phase
transitions that could be applied to the formation of spatial
patterns of condensed and gaseous phases: the model of
the nucleation and the model of the spinodal decomposition.
Both were generalized by us for the case of unstable particles
and used in the papers [8–11]. In these previous papers
we considered systems which had already been studied
experimentally. In the present paper we propose a new effect,
yet to be experimentally discovered. We study the distribution
of the density of the double quantum well indirect excitons and
its behavior in a non-homogeneous external field created by
the presence of a slot cut in a metallic electrode. Additionally,
we predict the migration of the patterns along the slot in a
non-homogeneous potential. Such motion is similar to the
Gunn effect, in which a charge distribution moves along a
semiconductor in an external electric field. The comparison
of the theory and the experiment would produce an additional
verification of the theory and present new effects in the
behavior of the high density excitons forming a condensed
phase.

2. The main equation for the exciton density

We consider a system in which high exciton density leads to the
formation of regions of the condensed phase. The distribution
of the exciton density will be studied in the framework of
the model of the spinodal decomposition. In the considered
system, where multiple regions of different phases are possible,

three characteristic time parameters can be introduced: the
time tl during which the local equilibrium is reached, the
exciton lifetime τ and the time tm required for establishing
the equilibrium between different islands of the condensed
phase. Usually the condition tl � τ holds and the system
quickly reaches the local equilibrium. It is the validity of this
criterion and the establishment of the local equilibrium that
allow the treatment of excitons in the limit of τ → ∞, which is
the typical approximation in many papers where single-phase
states are considered. But the time of the establishment of the
equilibrium between different regions of the condensed and
the gaseous phases is large (tm � τ ) because it is controlled
by slow diffusion processes. This equilibrium is not reached
during the exciton lifetime. Therefore, the exciton lifetime
is an important parameter for the description of the system in
conditions of the coexistence of several phases.

We shall deduce the equation for the exciton density distri-
bution using the exciton conservation law and phenomenolog-
ical expressions of the non-equilibrium thermodynamics. The
conservation law for the exciton density gives the following
equation

∂n

∂ t
= −div�j + G(�r) − n

τ
(1)

where G(�r) is the exciton generation rate or pumping (the
number of excitons created per unit area in unit time). The
processes of the creation and emission of excitons may be
described in such a simple form if the lifetime of excitons is
much larger than the time of the establishment of the local
equilibrium in the well.

In general, the connection between the flux �j and ther-
modynamical forces is non-local. In the case of uni-
form temperature this connection takes the form �j(�r , t) =
− ∫

M(�r t, �r ′t ′) �∇μ(�r ′t ′) d�r ′dt ′ where M(�r t, �r ′t ′) is a phe-
nomenological (kinetic) coefficient. It can be expressed via the
flux correlation function 〈 �j(�r t) �j(�r ′t ′)〉 [16, 17] where averag-
ing is carried out over the local equilibrium distribution. If the
thermodynamical force �∇μ(�r , t) changes slowly in time, com-
pared to the characteristic duration of the damping of the cor-
relation function, and in space, at the distances of the quantum
correlation length, we may consider the connection between
the exciton current and the gradient of the chemical potential
μ to be local:

�j = −M �∇μ (2)

where M is the exciton mobility.
If the time of the establishment of the local equilibrium is

significantly less than both the exciton lifetime and the time of
the establishment of the equilibrium between various regions,
the free energy of the quasi-local state can be considered as
a function of the exciton density n. The chemical potential
may be obtained if the free energy is known by the equation
μ = δF/δn. The free energy will be chosen in the form
suggested by the Landau model:

F[n] =
∫

d�r
(

K

2
( �∇n)2 + f (n) + nV

)

. (3)

The term K
2 ( �∇n)2 describes the energy due to inhomogeneity.

The additional energy acquired by excitons in the non-uniform
potential is taken into account by the term nV .
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Substituting equations (2) and (3) into equation (1) we
obtain

∂n

∂ t
= �∇

(

M �∇
(

−K�n + d f

dn
+ V

))

+ G − n

τ
. (4)

Later on we expand the functions f and M in the power
series of n. The phase transition occurs in the vicinity of the
minimum of f (n). We expand the f in series of n up to the
fourth power which is sufficient to introduce the minimum.

f (n) = κT n(ln n − 1) + a

2
n2 + b1

3
n3 + c

4
n4 (5)

where a, b1 and c are phenomenological parameters. Since
M is the smooth function of n we take into account the first
nonzero term in its expansion in powers of n. In this case
M = Dn/(κT ), where D is the diffusion coefficient of the
free exciton in the well.

The first term in equation (5) gives the typical expression
D�n in equation (1) in the limit of the low density. In the case
of the high exciton density, which is the range of our interest,
this term is not important. The other terms in equation (5) are
related to the exciton–exciton interaction. For a fixed value of
the electric field across the double quantum well and increasing
pumping at first, the term a

2 n2 plays the major role. In this case
the main contribution to the exciton–exciton interaction comes
from the dipole–dipole repulsion, which is the reason for the
blue shift of the exciton emission line observed with increasing
pumping. Therefore, the value of the parameter a is positive
(a > 0). As the exciton density grows further, the distance
between excitons decreases and the exchange and the van der
Waals interactions begin to contribute. These interactions may
give a negative contribution into the free energy. Additionally,
in order to obtain a stable state solution at n → ∞ the free
energy given by equation (5) requires c > 0. As we assume
that a condensed phase exists, the free energy should have a
minimum at a certain value of n. Therefore, the condition
b1 < 0 should apply.

The free energy may be expanded in the series of (n−nm),
where nm is the position of the minimum of f (n). In this case
f (n) = f (nm) + a1(n − nm)2 + b1(n − nm)3 + c1(n − nm)4.
The free energy was used in such a form in papers [8, 9] for the
explanation of structures observed in [1, 3]. For the parameters
of the system when the exciton density is close to nm, both
approaches give similar results. We shall use the free energy in
the form given by equation (5).

Let us perform the normalization choosing l0 = (K/a)1/2

as the unity length, n0 = (a/c)1/2 as the unity exciton density,
τ0 = (κT K c1/2)/(Da5/2) as the unity time and introducing
new notations: τ̃ = τ/τ0, G̃ = GcKκT/(Da3), b̃ =
b1/

√
ac, D̃ = κT c1/2/a3/2, Ṽ = V c1/2/a3/2 . The

dimensionless exciton lifetime depends on many parameters:
the exciton lifetime, which can be controlled by the size of
the interwell barrier, parameters of the condensed phase, the
diffusion coefficient and others. The estimations show that the
dimensionless exciton lifetime may vary in a wide range (10–
104).

Later on we shall omit the symbol ∼.

In the dimensionless units equation (1) for the exciton
density may be rewritten in the following form

∂n

∂ t
= D�n+div(n �∇(−�n+n+b1n2 +n3 +V ))+G −n/τ.

(6)
As shown in [18] in the case of the attractive interaction
between excitons, the uniform distribution of the exciton
density becomes unstable at a certain critical value of the
pumping.

Summarizing our approach, we will use the nonlinear
equation (6) for the exciton density instead of the nonlinear
Gross–Pitayevsky equation typically used for the wavefunction
of the excitonic condensate. The rationale for this is in the fact
that the exciton free path caused by a disorder is of the order
of the distance between excitons and much less than the order
of the typical size of a non-homogeneity ((1–10) mμ), which
appears when the emission patterns of [1, 3] are formed. As a
result the wavefunction of the condensate loses its coherence.

3. The additional potential for excitons in the vicinity
of a slot in an electrode and the exciton distribution
at a low intensity of excitation

Let us consider a semiconductor double quantum well
heterostructure sandwiched between two metallic electrodes:
the top electrode containing a transparent slot with width 2b,
and the bottom electrode covering the whole lower surface of
the sample (figure 1).

In order to solve the equation describing the density
distribution of excitons created under the slot by light, we first
determine the energy of an exciton localized in the double
well as a function of coordinates relative to the slot in the
electrode. Let us choose the X axis along the slot and the
Z axis perpendicular to the electrodes. When the voltage
is applied to the electrodes the indirect excitons acquire an
additional energy V = −pz Ez , where pz is the dipole moment
of an exciton, directed along the Z axis in the strong electric
field. The electric field under the slot is not uniform. In
order to determine its strength it is necessary to solve the
Laplace equation for the potential with the following boundary
conditions: the potential should be constant on both electrodes
and the potential difference between the electrodes must be
such that the field between the electrodes is equal to E0 far
from the slot. To this end we use the method of the solution
of the Laplace equation in ellipsoidal coordinates (see [19]).
We have used the solution presented in [19] for the problem
of determination of the field created by a grounded metallic
plate with a slot placed in the uniform external electric field.
In application to our problem this solution does not satisfy
the condition of constant potential on the lower electrode.
However, the corrections to the potential induced by the
presence of the slot decrease with distance from the slot, and,
therefore, are small near the lower electrode for b � L, where
L is the distance between the electrodes. For this reason, we
assume that the plane of the well is located much closer to
the upper electrode than to the lower electrode. Moreover,
using the solution of the problem considered in [19], where the
medium is the same on both sides of the electrode with the slot,
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Figure 1. The arrangement of quantum wells and electrodes in semiconductors in the case of a slot in the top electrode: (a) side view, (b) view
from above.

we assume that the upper electrode (the electrode with the slot)
is buried in the semiconductor. A well with high conductivity
may serve as an example of such an electrode [3]. Using these
approximations the additional potential energy created by the
presence of the slot in the electrode may be presented in the
following form

V (y, z) = V0

2

(

(
√

1 + b2/ξ(y, z) − 1)

− b2z2

2ξ(y, z)2
√

1 + b2/ξ(y, z)

×
(

1 + y2 + z2 + b2

√
(y2 + z2 − b2)2 + 4b2z2

))

(7)

where

ξ(y, z) = 1
2 (y2 + z2 − b2 +

√
(y2 + z2 − b2)2 + 4b2z2) (8)

V0 = −pz E0 is the shift of the exciton band caused by the
electric field far from the slot.

In our problem the coordinate z determines the distance
of the quantum well from the upper electrode. The potential
V (y, z) created by the slot is the function of the ratios y/b and
z/b. Figure 2 depicts the typical behavior of the potential as
a function of y for a certain set of parameters of a particular
geometry of the slot.

Because the electric field in the regions of the quantum
well under the slot is less than the field far from the slot, the
additional potential for excitons is positive. Therefore, the slot
creates a potential hump for an exciton in the center of the slot.
But in a certain vicinity of the borders of the slot the potential
has a small minimum with a negative value. This appears due
to the rearrangement of charges on the conductive electrode in
the vicinity to edges of the slot. The depth of the minimum
increases with increasing width of the slot (b) and becomes
constant in the limit z � b.

Let us analyze the distribution of the exciton density at
low intensity irradiation when the interaction between excitons
is not important. In the case of the irradiation of the system by a
laser with a wide beam, the excitons are created in the quantum
well in the region with the width 2b, so G(�r) = G(y) = G for
and G(�r) = G(y) = 0 for y < −b, y > b. This region
is shown in figure 2 by the dashed and solid lines for curves 1
and 2, respectively. After the excitation the excitons slide down

-75 -50 -25 25 50 75

-0.1

0.1

0.2

0.3

0.4

1

2

y

V(y,z)

Figure 2. The dependence of the potential created by the slot on the
distance from the center of the slot in the plane of the quantum well
for the following values of the dimensionless parameters:
b1 = −2.23, τ = 100, D = 0.2, V0 = −5, z = −15, b = 5 for curve
1 and b = 10 for curve 2.

in the field of the inhomogeneous external potential V (y, z).
But due to the finite value of the lifetime excitons penetrating
under the electrode cannot move far from the slot. As a
result, the exciton density distribution has a maximum under
the rim of the window. The shape of the spatial distribution of
the exciton density and the position of the maximum depend
on the width of the slot, the exciton lifetime, the diffusion
coefficient and the form of the additional potential. This
distribution, obtained from the solution of equation (6) in the
linear approximation with respect to n, is presented in figure 3.

For a narrow slot, the exciton density has a maximum in
the center of the slot (figure 3, curve 1 and figure 4). With
increasing the width the maxima of the exciton density are
developed at the edges of the slot (see curve 2 in figure 3).
In the general case the positions of the maxima do not
coincide with the positions of the minima of the additional
potential (see figure 2). For example, according to figure 3,
the maximum density for curves 2 takes place at y = 8,
while for the corresponding value of b the minimum of the
potential V in figure 2 occurs at y = 27. The position of the
maximum distribution function depends significantly on the
exciton lifetime.
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Figure 3. The dependence of the exciton density at low intensity
excitation on the distance from the center of the slot for the following
values of the dimensionless parameters: b1 = −2.23, τ = 100,
D = 0.2, V0 = −5, G = 0.004, z = −15, b = 5 for curve 1, b = 10
for curve 2.
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Figure 4. The spatial distribution of the exciton density at the low
intensity excitation for the following values of the dimensionless
parameters: b1 = −2.23, τ = 100, D = 0.2, V = −5, G = 0.007,
z = −15, b = 7.

4. The structure formation at high exciton density

In the case of the high exciton density the nonlinear
equation (6) was solved numerically for a strip in the XY
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Figure 5. The spatial distribution of the exciton density at the low
intensity excitation for the following values of the dimensionless
parameters: b1 = −2.23, τ = 100, D = 0.2, V0 = −5, G = 0.009,
z = −15, b = 7.

plane extending beyond the slot on both sides. The following
boundary conditions were chosen: the normal projection of the
exciton flux at the boundaries of the strip was set to be equal
to zero. The size of the strip was chosen sufficiently large to
make the results insensitive to it. The obtained results are as
follows.

According to figures 3 and 4 for a small value of b
and for the low intensity irradiation the exciton density has
a maximum in the region directly under the center of the
slot. With increasing pumping the uniform distribution of
the exciton density along the slot becomes unstable and a
periodical structure arises (figure 5). Islands of the condensed
phase of excitons alternate with regions of the gas phase.
The threshold value of the exciton generation rate, at which
the periodical structure appears, increases with decreasing the
width of the slot.

As the pumping increases further, the periodical structure
transforms into a continuous distribution with a high value of
the exciton density in the center (figure 6) extending along
the whole length of the slot. For the system presented in
figure 6 the density in the center exceeds the value created
by the pumping directly. The reason for that is the attractive
interaction between excitons which gathers the excitons in the
center despite the fact that the external potential pulls them
away from the center. This phenomenon should be observed
in experiment as a spatial narrowing of the strip of emission
from the middle of the slot.
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Figure 6. The spatial distribution of the exciton density at the low
intensity excitation for G = 0.01. The other parameters are the same
as in figure 5.

With increasing width of the slot, the maxima of the
exciton density develop at the edges of the slot (see curve 2
in figure 3) and the pattern of the islands undergoes interesting
changes. In this case two parallel chains of islands localized at
the opposite sides of the slot arise instead of a single chain in
the center (figure 7). The positions of the islands in the chains
are shifted by a half of the chain period with respect to each
other.

The results are presented in dimensionless units which is a
convenient way to perform theoretical calculations. It is useful
to provide an example of the results for a particular system
expressed in dimensional units making realistic suggestions
about the values of the parameters that enter the expression
for the free energy. The values of the real parameters
characterizing indirect excitons, such as the lifetime and
the diffusion coefficient, depend strongly on the structure
of the double quantum well. We shall take typical values
for them given in the literature. As the presented theory
is phenomenological, the parameters in the expression for
the free energy are unknown and should be extracted from
experimental data. The parameter a in equation (5) may
be estimated from the blue shift of the exciton levels with
increasing the exciton density in the range lower than the
critical density of the condensation. For the values of other
parameters we rely on the analysis of the experiment [3]
carried out in [11]. For example, we suggest the following
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Figure 7. The formation of two parallel chains of islands with
increasing width of the slot. The parameters of the system are as
follows: b1 = −2.23, τ = 100, D = 0.2, V0 = −5, G = 0.009,
z = −15, b = 10.

values for the parameters for the system: τ = 10−8 s, D =
10 cm−2 s−1, an0 = 2 × 10−3 eV, n0 = 3.2 × 1010 cm−2,
l0 = 0.7 μm. The dimensional values of still other parameters
(K , c, b1) can be expressed as mentioned above. For such
values of the parameters of the exciton system the results
presented in figure 5 correspond to the following dimension
values for the system with the slot: the width of the slot
2b = 10 μm, the distance from the double quantum well
to the electrode 10.5 μm, the applied bias V0 = −10−2 eV
and the pumping G = 2.9 × 1018 cm2 s−1. The period of
superlattice in figure 5 equals 14 μm and the maximal value of
exciton density in the chain equals 3.6×1010 cm−2. The double
chain of the condensed phase islands is observed in figure 7 at
2b = 14 μm.

5. Moving islands of the condensed phase of excitons
in quantum wells. Excitonic analog of the Gunn
effect

Let us suggest a system in which additionally to the slot there
exists an external potential with a gradient along the x axis:
Vh(x, y, z) = V (y, z) + δV x , where V (y, z) is the potential
determined earlier by equation (7). The additional potential
δV x may be created by the inhomogeneous pressure.

6
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It is simple to show that in the potential δV x there exists
an auto-wave solution of equation (6) for the exciton density,
i.e. the solution with the time and space coordinates connected
by the relation ξ = x − vt that takes the form nh(x, y, z) =
n(x −vt, y, z), where n(x, y, z) is the steady-state solution for
the exciton density distribution obtained above and v = −δV
is the velocity of the auto-wave. In this manner the structure
determined by equation (6) moves with velocity v. So, the
exciton density is a periodical function of the coordinate
drifting with a certain velocity along the slot. And the exciton
density changes periodically as a function of time in a certain
point of space.

Let us make some estimations. In the dimensional units
the velocity is equal to v = −DδV/(κT ). In the case of
D = 10 cm2 s−1, T = 2 K, δV = 10−3 eV/(100 μm) we
obtain v = 5.7 × 103 cm s−1. It should be noted that every
island of the condensed phase contains many excitons (more
than 1000) and, therefore, their motion is accompanied with
the external field driven transfer of energy of the order of 103–
104 eV.

The considered effect resembles the Gunn effect known
in semiconductor physics. Both effects are nonlinear. In the
Gunn effect, a fluctuation of the charge distribution (a domain)
moves in the crystal, while in the considered case it is the island
of the condensed phase of excitons that drifts along the slot.
The inhomogeneous potential plays a role similar to the role
of the electric field in the Gunn effect. But, in contrast to the
Gunn effect, where the number of particles is conserved, in the
considered case the excitons are constantly created and decay.

6. Conclusions

We have studied the distribution of the density of indirect
excitons in a double quantum well in the spatial region under
a transparent slot in a metallic electrode. The excitons are
created by light irradiation through the slot. It is assumed
that there exists a condensed phase of excitons which is
described phenomenologically. For the determination of the
exciton density in the quantum well the model of the spinodal
decomposition of the phase transitions theory, generalized for
the case of unstable particles, is used. The structures of
the exciton density distribution in the vicinity of the slot are
studied depending on the pumping, the width of the slot, the
distance between the quantum well and the electrode. It is
shown that at a certain value of the pumping a periodical chain
of islands of exciton condensed phases arises. With increasing
the width of the slot the chain splits into two chains shifted
by a half period of the chain with respect to each other. If an
additional potential with a linear dependence on the coordinate
along the slot is applied the chain moves along the slot with
a constant velocity. During such drift the exciton density in a
certain point of the system is a periodical function of time. The
period of the oscillations is also determined by the parameters
of the potential. The effect should manifest itself in the form of
a periodical variation of the intensity of the light emitted from
a certain region under the slot.

An experimental study of the suggested setup would give
the possibility of building periodical structures controlled by
light.
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